<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第八屆圖書館論壇 校體購2

          COSMOtherm Version C3.0

          教育裝備采購網 2015-01-29 11:32 圍觀4507次

            COSMOtherm Version C3.0 Release 15.01

            主要升級特點一覽:

            顯著改善BP-TZVPD-FINE預測精度

            多個應用增加了新特點并改進了算法

            增強了用戶圖形界面COSMOthermX的功能

            升級特點詳細描述:

            1.COSMOtherm精度與適用性:

            精度:高精度預測方法BP-TZVPD-FINE包含了先進的氫鍵能描述項HB2012,新版COSMOtherm中增加了最新的描述殘余電介質修正(RDC),適合描述中程靜電相互作用。RDC項的增加全面提高定性和定量預測精度。

            針對高精度計算方法(BP-TZVPD-FINE)、產品級別精度計算方法(BP-TZVP-COSMO和DMOL3-PBE)和篩選級別精度計算方法(BP-SVP-AM1)COSMOtherm參數進行了重新優化,包括優化擬合數據源化合物選擇和驗證數據源化合物選擇,另外異構體的選擇也進行了精心的優化。

            適用性:高精度計算方法BP-TZVPD-FINE預測速度得到了顯著提高(根據化合物大小和復雜成度不同,大約提高1~3倍)。

            2. COSMOtherm新功能和擴展功能:

            界面張力預測(IFT):COSMOthermX增加了四種模型,預測兩種混溶液體之間表面張力的功能模塊。其中三種模型是QSPR模型,依賴于IFT經驗關系和COSMOtherm預測的液-液相分離濃度或溶劑-溶劑溶解度。

            上述經驗模型適用于室溫和純溶劑相,并且必須包含純水為給定相。三種經驗IFT模型嵌入到COSMOthermX界面的“Environmental Properties”選項卡中。另一種,基于COSMOtherm的FLATSURF方法的迭代、自洽計算功能模塊在COSMOthermX的IFT選項卡中。雖然IFT迭代方法預測,比經驗方法需要更多的計算資源,但是沒有溫度和混合方面的限制。

            聚合物性質計算得到了顯著地簡化,是通過嵌入Elbro等1提出的聚合物自由體積組合項到COSMOtherm和COSMOthermX實現的。Elbro組合項結合輸入的表觀分子量,允許COSMOtherm或COSMOthermX定量預測聚合物性質2。

            溶解度和鹽溶解度計算功能擴展到最高級別計算精度方法SELSOL,可精確預測固液平衡和液液平衡。因此,沒有任何歧義的前提下溶解度預測是可能的。

            針對所有氣液、液液和固液平衡相圖計算(包括二元、三元和多元),提高了默認參數設置下計算精度并且相圖計算格點采取方法從摩爾百分比擴展到質量和體積百分比。

            所有二元或三元相圖計算(包括氣液、液液和固液平衡),其中每種相都可以是多個化合物組成的混合物,也可以是由化學計量比組成的離子或中性化合物組成。

            多組分多相液體萃取,二元、三元和多元液液相平衡預測中溶解度自洽計算算法變得更為穩定強壯。特別是氣相liq_ex計算得到了很大的改進。

            COSMOmic內嵌到COSMOtherm模塊中,操作更為簡便,其中“.mic-files”包含了所有描述膠束的必要信息。

            接觸面統計的圖形化顯示得到了改進,用戶根據該功能更為精確的計算接觸面統計和描述計算結果。

            QSPR性質可在不同溫度和混合物條件下進行(Mix-QSPR選項卡),并針對所有異構體進行平均。其結果將輸出到專門的QSPR輸出結果表格中。

            3. COSMOthermX 圖形用戶界面(GUI):

            2013年12月重新設計的COSMOthermX得到了改進和整合??赏瑫r在GUI平臺上高效的、交互的進行多個任務的運行和分析。COSMOthermX中引入了新的批處理和篩選功能,如計算一定溫度范圍和濃度范圍內的性質計算。最新的“Look & Feel”進一步增強了圖形用戶界面的可用性。

            可操作實驗數據(如飽和增氣壓),用戶根據需要選擇數據,并且規避某些數據的選擇。

            修改了標準的數據庫界面,用戶可以更方便、直觀的在多個數據庫中進行數據搜索。另外,軟件啟動的時數據庫將在后臺自動加載,因此GUI將在整個數據庫啟動之前開始工作,大大提高了COSMOthermX的啟動速度。

            增加了自由的文本操作界面,供用戶方便操作GUI尚未包含的計算功能設置。

            4. 改進BP-TZVPD-FINE

            2011年引入的BP-TZVPD-FINE得到了很大的改進。除前幾年的改進,本次重點增加了相互作用微表面電荷形成的偶極子電介質相互作用計算的修正,細節將2015年發表。經典的COSMO-RS理論認為,氫鍵能正比于由可提供氫鍵的原子組成的表面數量。 相反,2011年引入的TZVPD-FINE認為氫鍵-焓是由氫鍵的給體和受體原子數目決定,而氫鍵-熵由給體和受體表面數量和極性決定。

            目前BP-TZVPD-FINE包括如下特點:

            · Residual Dielectric Correction (RDC) (New Dec. 2014)

            · Dispersion energies based on Grimme’s D3 method3 (Dec. 2013)

            · Dispersion correction to the HB interaction energy (Dec. 2013)

            · Entropic contribution of HB acceptor sites (Dec. 2012)

            · New hydrogen bonding physics (Dec. 2011)

            · Steric hindrance for hydrogen bonding (Dec. 2011)

            · Inclusion of some hydrogen bonding cooperativity effects (Dec. 2011)

            · New quantum chemical level (BP-TZVPD) (Dec. 2011)

            · Improved cavity construction (FINE-cavity) (Dec. 2011)

            1 Elbro, H. S.; Fredenslund, A.; Rasmussen, P. A. Macromolecules 23, 4707 (1990).

            2 Loschen, C.; Klamt, A. Ind. Eng. Chem. Res. 53, 11478 (2014).

            3 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 1 3 2, 154104 (2010).

            Details on the residual dielectric correction term (RDC)

            In classic COSMORS the electrostatic misfit energy is calculated locally for surface patches in close contact. This way any nonlocal,

            long range electrostatic interactions are neglected.However, in the COSMO-RS ensemble of contacting molecular charge surface patches situations may occur, where contacting surface patches with different

            charges cancel out only partly and a certain amount of charge residue is left on the molecule’s surfaces. The interaction of the residual

            surface charges can be relevant in some cases, but in classic COSMO-RS it is neglected. In particular, if the residual surface charges form a dipole (or even have a total charge), then long range electrostatic

            interactions will become relevant (e.g. a nonpolar solute like hexane in a polar solvent like DMSO). This is the main source of the long-standing COSMO-RS problem with dipolar-aprotic solvents, also known as the “DMSO-issue”. As a solution to this problematic subject, the so called Residual Dielectric Correction (RDC) term was introduced into the

            BPTZVPD-FINE level COSMO-RS theory. The basic idea of the RDC term is that long range electrostatic interactions (nth order solvation shells) can be described by a COSMORSinherent dielectric continuum model in analogy to the quantum chemical COSMO model. The residual charge is screened

            by a polarizable dielectric continuum representing the first solvation shell. In addition, the second solvation shell screening due to

            solvent reorientation around the first solvation shell is taken into account. The resulting dielectric energy depends on the dielectric

            constant of the solvent/mixture in terms of its static permittivity ? and refractive index n2.

            Although the charge distribution on a molecule is now treated within a solvent continuum, the long range Coulomb interactions between

            ionic species are not accounted for. This means that the residual dielectric correction does not attempt to replace a Pitzer-Debye-Hückel term or a similar correction term for the electrostatic long range interaction of hard ions.Advantages of the new RDC term:

            The expectable root mean square error of BP-TZVPD-FINE-C30-1501 parameterization is now smaller than 0.4 kcal/mol, which is an improvement by 0.03 kcal/mol over the BP-TZVPD-

            FINE parameterization 1401 of December 2013 and by 0.1 kcal/mol over the current TZVP parameterization. Dipolar aprotic

            solvent compounds such as dimethylsulfoxide (DMSO), or dimethylformamide (DMF) have profited the most from the RDC term.

            Their prediction error is reduced by up to 0.5 kcal/mol and is now in the same range as the overall expectable error.

            Disadvantages of the new RDC term:

            Although the construction and evaluation of the RDC term is time consuming and

            computationally demanding, the loss of computation speed has been more than made up for by

            other speed enhancements in the FINE level’s HB2012 hydrogen bonding term (as noted in

            section 1, above). Thus, altogether the calculation speed of FINE 1501 is faster than that of all

            previous FINE versions. A slight backdraw of the new RDC term is its usage of estimated values for the squared refraction index

            n2 and the dielectric constant ?. Though these estimations are good enough to provide an overall benefit, some rare molecules,

            however, might get bad estimations. It is possible to use experimental data for such cases.

          點擊進入北京泰科博思科技有限公司展臺查看更多 來源:北京泰科博思科技有限公司 我要投稿
          校體購終極頁

          相關閱讀

          • 《COSMOTherm軟件培訓課程》成功舉辦
            教育裝備采購網04-27
            2018年4月20-22日,北京泰科博思科技有限公司助力《第十九屆中國化學會化學熱力學與熱分析學術會議》圓滿成功。4月23日,北京泰科科技組織的COSMOTherm軟件培訓班緊鑼密鼓的于遼寧沈陽皇冠假日酒...
          • COSMO-RS理論及COSMOtherm應用培訓課程成功舉辦!
            教育裝備采購網09-11
            2017年9月6-8日,《COSMO-RS理論及COSMOtherm應用培訓課程》在中科院過程工程研究所成功舉行!此次會議由北京泰科科技、中科院過程工程研究所、德國COSMOlogic公司聯合舉辦,并作為2017綠色化學與...

          版權與免責聲明:

          ① 凡本網注明"來源:教育裝備采購網"的所有作品,版權均屬于教育裝備采購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權范圍內使用,并注明"來源:教育裝備采購網"。違者本網將追究相關法律責任。

          ② 本網凡注明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網注明的"稿件來源",并自負版權等法律責任。

          ③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯系,否則視為放棄相關權利。

          校體購產品
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>