<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第八屆圖書館論壇 校體購2

          MC1000 8通道藻類培養與在線監測系統部分參考文獻名錄

          教育裝備采購網 2019-07-18 15:27 圍觀1283次

            ?1.Sengupta A, et al. 2019. The effect of CO2 in enhancing photosynthetic cofactor recycling for alcohol dehydrogenase mediated chiral synthesis in cyanobacteria. Journal of Biotechnology 289: 1-6

            2.Patel A, et al. 2019. Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass. Marine drugs 17(2): 119

            3.Li Y, et al. 2019. Transcriptome analysis reveals regulation of gene expression during photoacclimation to high irradiance levels in Dunaliella salina (Chlorophyceae). Phycological Research, DOI: 10.1111/pre.12379

            4.Zheng Z, et al. 2019. Far red light induces the expression of LHCSR to trigger nonphotochemical quenching in the intertidal green macroalgae Ulva prolifera. Algal Research 40: 101512

            5.Liberton M, et al. 2019. Enhanced nitrogen fixation in a glgX-deficient strain of Cyanothece sp. strain ATCC 51142, a unicellular nitrogen-fixing cyanobacterium. Applied and Environmental Microbiology 85(7): e02887-18

            6.Taparia Y, et al. 2019. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Scientific Reports 9: 8217

            7.Mundt F, et al. 2019. RNA isolation from taxonomically diverse photosynthetic protists. Limnology and Oceanography: Methods 17(3): 190-199

            8.Ferro L, et al. 2018. Subarctic microalgal strains treat wastewater and produce biomass at low temperature and short photoperiod. Algal Research 35: 160-167

            9.Jaiswal D, et al. 2018. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Scientific Reports 8:16632

            10.Willamme R, et al. 2018. Surprisal analysis of the transcriptomic response of the green microalga Chlamydomonas to the addition of acetate during day/night cycles. Chemical Physics 514: 154-163

            11.Santos-Merino M, et al. 2018. Engineering the fatty acid synthesis pathway in Synechococcus elongatus PCC 7942 improves omega-3 fatty acid production. Biotechnol Biofuels 11:239

            12.Hagemann M, et al. 2018. The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. Front. Plant Sci. 9:1718

            13.Ilík P, et al. 2018. Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytologist 218: 1278–1287

            14.De-Luca R, et al. 2018. Modelling the photosynthetic electron transport chain in Nannochloropsis gaditana via exploitation of absorbance data. Algal Research 33: 430-439

            15.Perozeni F, et al. 2018. LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. International Journal of Molecular Sciences 19(1): 155

            16.Huang JY, et al. 2018. Regulating photoprotection improves photosynthetic growth and biomass production in QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetica 56(1): 192–199

            17.Varshney P, et al. 2018. Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research 30: 28-37

            18.Bekoe D, et al. 2018. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation. Journal of Environmental Science and Health, Part B 53(2): 145-151

            19.Ferro L, et al. 2018. Isolation and characterization of microalgal strains for biomass production and wastewater reclamation in Northern Sweden. Algal Research 32: 44-53

            20.Nagy V, et al. 2018. Water-splitting-based, sustainable and efficient H 2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle. . Biotechnol Biofuels 11:69

            21.Patel A, et al. 2018. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol Biofuels 11:169

            22.Bogaert KA, et al. 2018. Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas. PLoS ONE 13(4): e0195142

            23.Kirsch F, et al. 2018. Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 164: 1220-1228

            24.Miazek K, et al. 2017. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresource Technology 230: 122-131

            25.K?m?r?inen J, et al. 2017. Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low‐light mixotrophic conditions in Synechocystis sp. PCC 6803. New Phytologist 214: 194–204

            26.Jouhet J, et al. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLOS ONE 13(10): e0206397

            27.Miazek K, et al. 2017. Effect of enzymatic beech fagus sylvatica wood hydrolysate on Chlorella biomass, fatty acid and pigment production. Applied Sciences 7(9): 871

            28.Vidal‐Meireles A, et al. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress‐induced response via the VTC2 gene encoding GDP‐l‐galactose phosphorylase. New Phytologist 214: 668–681

            29.Rademacher N, et al. 2017. Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology 217: 49-56

            30.Bernardi A, et al. 2017. Semi-empirical modeling of microalgae photosynthesis in different acclimation states–Application to N. gaditana. Journal of Biotechnology 259: 63-72

            31.Mitchell MC, et al. 2017. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Journal of Experimental Botany, 68(14): 3891–3902

            32.Nelson DR, et al. 2017. The genome and phenome of the green alga Chloroidium sp. UTEX 3007 reveal adaptive traits for desert acclimatization. eLife 6: e25783.

            33.Gandini C, et al. 2017. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytologist 215: 256–268

            34.Glemser J, et al. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Applied Microbiology and Biotechnology 100(3): 1077-1088

            35.Gérin S, et al. 2016. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. Front. Plant Sci. 7:1158

            36.Loera‐Quezada MM, et al. 2016. A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnology Journal 14: 2066-2076

            37.Zhang B, et al. 2016. Sustainable production of algal biomass and biofuels using swine wastewater in North Carolina, US. Sustainability 8(5): 477

            38.Alboresi A, et al. 2016. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiology 171: 2468–2482

            39.Zuliani L, et al. 2016. Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. International Journal of Molecular Sciences 17(10): 1692

            40.Zhu Y, et al. 2016. A novel redoxin in the thylakoid membrane regulates the titer of photosystem I. The Journal of Biological Chemistry 291: 18689-18699.

            41.Bernardi A, et al. 2016. High-fidelity modelling methodology of light-limited photosynthetic production in microalgae. PLOS ONE 11(6): e0156922.

            42.Minhas AK, et al. 2016. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresource Technology 211: 556-565

            43.Berteotti S, et al. 2016. Increased biomass productivity in green algae by tuning non-photochemical quenching. Scientific Reports 6: 21339

            44.Varshney P, et al. 2016. Effect of high CO2 concentrations on the growth and macromolecular composition of a heat- and high-light-tolerant microalga. Journal of Applied Phycology 28(5): 2631–2640

            45.Bernardi A, et al. 2016. A model-based investigation of genetically modified microalgae strains. Computer Aided Chemical Engineering 38: 607-612

            46.Du W, et al. 2016. Nonhierarchical Flux Regulation Exposes the Fitness Burden Associated with Lactate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology 6(3): 395-401

            47.Yu J, et al. 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports 5:8132, DOI: 10.1038/srep08132

            48.Grama B S, et al. 2015. Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.5b01544

            49.Davis R W, et al. 2015. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresource Technology 198, 577-585

            50.Patzelt D J, et al. 2015. Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures. Journal of Applied Phycology, 27(6), 2239-2250

            51.Patzelt D J, et al. 2015. Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus. Algal Research 10, 164-171

            52.Flowers J M, et al. 2015. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardti. The Plant Cell 27(9), 2353-2369

            53.Makower A K, et al. 2015. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81(2), 544-554

            54.Vu M T T, et al. 2015. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, doi:10.1007/s10811-015-0722-2

            55.Nikolaou A, et al. 2015. A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. Journal of Biotechnology 194, 91-99. DOI: 10.1016/j.jbiotec.2014.12.00

            56.Gris B, et al. 2015. Optimizing biomass and high value compound production in Cyanobacterium aponinum PCC 10605. Societa Botanica Italiana. Venezia.

            57.Gérin S, et al. 2014. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Systems Biology 8, 96

            58.Hasan R, et al. 2014. Bioremediation of Swine Wastewater and Biofuel Potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175

            59.?antr??ek J, et al. 2014. Stomatal and pavement cell density linked to leaf internal CO2 concentration. Annals of Botany 114, 191-202

            60.Zhang B, et al. 2014. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization. BioResources 9(4), 6130-6140

            61.Grama B S, et al. 2014. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresource Technology 151, 297-305

            62.Grama B S, et al. 2014.Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69, 265-275

            63.Miazek K, et al. 2014. Growth of Chlorella in the presence of organic carbon: A photobioreactor study. Conference – Process of Technics 2014 – Prague

          點擊進入北京易科泰生態技術有限公司展臺查看更多 來源:教育裝備采購網 作者:北京易科泰生態技術有限公司 責任編輯:方劍波 我要投稿
          校體購終極頁

          相關閱讀

          • 易科泰藻類培養與在線監測系統在中國地質大學安裝運行

            易科泰藻類培養與在線監測系統在中國地質大學安裝運行
            教育裝備采購網07-20
            易科泰藻類培養與在線監測系統在中國地質大學水資源與環境學院安裝落成并正式運行,用于在精確控制的光照和溫度下,實時動態監測環境條件對微藻生物量...
          • MC1000在農業環境與可持續發展研究所安裝運行

            MC1000在農業環境與可持續發展研究所安裝運行
            教育裝備采購網03-06
            農業環境與可持續發展研究所MC1000八通道藻類培養與在線監測系統安裝運行MC1000八通道藻類培養與在線監測系統在農科院農業環境與可持續發展研究所安裝...
          • FMT150藻類培養與在線監測系統落戶中科院植物研究所

            FMT150藻類培養與在線監測系統落戶中科院植物研究所
            教育裝備采購網08-26
            近日,北京易科泰生態技術有限公司為中國科學院植物研究所成功安裝FMT150藻類培養與在線監測系統。這套系統培養體系為1L,配備白/紅雙色LED光源板(培...
          • 海洋學院藻類培養與在線監測安裝運行
            北京易科泰生態技術有限公司10-26
            日前,北京易科泰生態技術公司工程師為浙江海洋學院安裝了一套FMT150藻類培養與在線監測系統,計劃用于經濟藻類的育種及水產養殖生態的研究,培養更加優秀的經濟藻種并探索優化水產養殖技術。FM...

          版權與免責聲明:

          ① 凡本網注明"來源:教育裝備采購網"的所有作品,版權均屬于教育裝備采購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權范圍內使用,并注明"來源:教育裝備采購網"。違者本網將追究相關法律責任。

          ② 本網凡注明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網注明的"稿件來源",并自負版權等法律責任。

          ③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯系,否則視為放棄相關權利。

          校體購產品
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>