<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第八屆圖書館論壇 校體購2

          MC1000藻類培養與監測系統文獻列表

          教育裝備采購網 2022-05-05 09:38 圍觀578次

          MC 1000 8通道藻類培養與在線監測系統文獻列表

          (2020年-2022年2月)

            1.Jia M,et al. 2022.The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. The Plant Journal. doi: 10.1111/tpj.15673.

            2.Széles E, et al. 2022. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of Chlamydomonas reinhardtiion a Single-Cell Level. Cells 11(2):285.

            3.Pessi BA, et al. 2022. Does temperature shift justify microalgae production under greenhouse? Algal Research 61: 102579.

            4.Ben-SA, Vonshak A. 2022. Tolerance to exogenously added ROS examined for correlation with enhanced specific growth rates of Arthrospira platensis. Journal of Applied Phycology. doi: 10.1007/s10811-022-02688-0.

            5.Fettah N,et al. 2022. Effect of light on growth of green microalgae Scenedesmus quadricauda: influence of light intensity, light wavelength and photoperiods. International Journal of Energy and Environmental Engineering. doi:10.1007/s40095-021-00456-3.

            6.Admirasari R, et al. 2022. Nutritive capability of anaerobically digested black water increases productivity of Tetradesmus obliquus: Domestic wastewater as an alternative nutrient resource. Bioresource Technology Reports 17: 100905.

            7.Dann? M, et al. 2021. Enhancing photosynthesis at high light levels by adaptive laboratory evolution. Nature Plants 7: 681–695.

            8.Huokko T, et al. 2021. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nature Communications 12: 3475.

            9.Lin JY, Ng IS. 2021. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresource technology 342: 125946.

            10.Kona R, et al. 2021. Lutein and β-carotene biosynthesis in Scenedesmussp. SVMIICT1 through differential light intensities. Bioresource technology 341:125814.

            11.Shabestary K, et al. 2021. Cycling between growth and production phases increases cyanobacteria bioproduction of lactate. Metabolic engineering 68: 131-141.

            12.Sp?t P, et al. 2021. Alterations in the CO2availability induce alterations in the phosphoproteome of the cyanobacterium Synechocystissp. PCC 6803. New Phytologist 231: 1123-1137.

            13.Billey E,et al. 2021. Characterization of the Bubblegum acyl-CoA synthetase of Microchloropsis gaditana. Plant Physiology 185(3): 815-835.

            14.Bandyopadhyay A, et al. 2021. Antenna Modification Leads to Enhanced Nitrogenase Activity in a High Light-Tolerant Cyanobacterium. Mbio 12(6): e03408-21.

            15.Chen H, et al. 2021. A Novel Mode of Photoprotection Mediated by a Cysteine Residue in the Chlorophyll Protein IsiA. mBio 12(1).

            16.Liu X, et al. 2021. Chlorophyll fluorescence as a light signal enhances iron uptake by the marine diatom Phaeodactylum tricornutumunder high-cell density conditions. BMC biology 19(1): 1-15.

            17.Cecchin M, et al. 2021. CO2supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorellaspecies. Plant, Cell & Environment 18(2): 431842.

            18.Lin JY, et al. 2021. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcussp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environmental Research 206: 112283.

            19.Battaglino B, et al. 2021. Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystissp. PCC6803. ACS Synthetic Biology 10(12): 3518-3526.

            20.Ben SA, et al. 2021. Characterization of nannochloropsisoceanicarose bengal mutants sheds light on acclimation mechanisms to high light when grown in low temperature. Plant and Cell Physiology 62(9): 1478-1493.

            21.Gachelin M, et al. 2021. Enhancing PUFA-rich polar lipids in Tisochrysis luteausing adaptive laboratory evolution (ALE) with oscillating thermal stress. Applied Microbiology and Biotechnology 105: 301-312.

            22.Pivato M, et al. 2021. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. Algal Research 55(16):102255.

            23.Busnel A, et al. 2021. Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: Application to Arthrospira platensisand Haematococcus pluvialis. Algal Research 58: 102386.

            24.Guljamow A, et al. 2021. Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosaPCC 7806. Microorganisms 9(6): 1265.

            25.Barera S, et al. 2021. Effect of lhcsrgene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtiicultures. Journal of Biotechnology 328: 0168-1656.

            26.Canizales S, et al. 2021. Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. Journal of Applied Phycology 33 (6): 3565-3577.

            27.Dixit RB, et al. 2021. Secretomics:A Possible Biochemical Foot Printing Tool in Developing Microalgal Cultivation Strategies.World Journal of Microbiology and Biotechnology 37(11):1-11.

            28.Zhao L, et al. 2020. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nature Plants 6(7): 869–882.

            29.Yao L,et al.. 2020. Pooled CRISPRi screening of the cyanobacterium Synechocystissp PCC 6803 for enhanced industrial phenotypes. Nature Communications 11(1): 1666.

            30.Lfb A, et al. 2020. Metabolic engineering of Synechocystissp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Metabolic Engineering 57:129-139.

            31.Perozeni F, et al. 2020. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnology Journal 18(10) : 2053-2067.

            32.Shrameeta S, et al. 2020. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria1. Plant Physiology 182(1):507-517.

            33.Flamholz AI,et al. 2020. Functional reconstitution of a bacterial CO2concentrating mechanism in Escherichia coli. eLife9: e59882.

            34.Iasimone F, et al. 2020. Bioflocculation and settling studies of native wastewater filamentous cyanobacteria using different cultivation systems for a low-cost and easy to control harvesting process. Journal of Environmental Management 256(15): 109957.

            35.Wu W, et al. 2020. Using osmotic stress to stabilize mannitol production in Synechocystissp. PCC6803. Biotechnology for Biofuels 13(1) : 879-891.

            36.Cecchin M, et al. 2020. Improved lipid productivity in Nannochloropsisgaditana in nitrogen-replete conditions by selection of pale green mutants. Biotechnology for Biofuels 13(1): 1-14.

            37.Nzayisenga, JC,et al. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels 13(284): 1179-1184.

            38.Gupta JK, et al. 2020. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcussp. PCC 7002 increases growth rate and glycogen accumulation. Biotechnology for Biofuels 13(1): 1-12..

            39.Sengupta S, et al. 2020. Metabolic engineering of a fast-growing cyanobacteriumSynechococcuselongatus PCC11801 for photoautotrophic production of succinic acid. Biotechnology for Biofuels 13(1): 539-554.

            40.Kareya MS, et al. 2020. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO2in Microchloropsis gaditanaNIES 2587. Frontiers in Plant Science 11: 981.

            41.Alvarenga D, et al. 2020. AcnSP – A Novel Small Protein Regulator of Aconitase Activity in the Cyanobacterium Synechocystissp. PCC 6803. Frontiers in Microbiology 11: 1445.

            42.Minhas AK, et al.2020. Microalga Scenedesmus bijugus: Biomass, lipid profile, and carotenoids production in vitro. Biomass and Bioenergy 142: 105749.

            43.Alessandra B,et al. 2020. Photosynthesis Regulation in Response to Fluctuating Light in the Secondary Endosymbiont Alga Nannochloropsis gaditana. Plant & Cell Physiology 61(1): 41-52.

            44.Ahmad A, et al. 2020. Biochemical Characteristics and a Genome-Scale Metabolic Model of an Indian Euryhaline Cyanobacterium with High Polyglucan Content. Metabolites10(5):177.

            45.Sengupta A, et al. 2020. Photosynthetic Co-Production of Succinate and Ethylene in A Fast

            -Growing Cyanobacterium, Synechococcus elongatusPCC 11801. Metabolites 10(6): 250.

            46.Munz J, et al. 2020. Arginine-fed cultures generates triacylglycerol by triggering nitrogen starvation responses during robust growth in Chlamydomonas. Algal Research 46: 101782.

            47.Weiner I, et al. 2020. CSO -A sequence optimization software for engineering chloroplast expression in Chlamydomonas reinhardtii. Algal Research 46: 101788.

            48.Zhang B, et al. 2020. The carbonate concentration mechanism of Pyropia yezoensis(Rhodophyta): evidence from transcriptomics and biochemical data. BMC Plant Biology 20(1): 424.

            49.Li YX,et al. 2020. Transcriptome analysis of carotenoid biosynthesis in Dunaliella salinaunder red and blue light. Journal of Oceanology and Limnology 38(1):177-185.

            50.Dienst D,et al. (2020). High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystissp. PCC 6803. Scientific Reports10(1): 5932.

            51.Pathania R, et al. 2020. Synechococcus elongatusBDU 130192, an Attractive Cyanobacterium for Feedstock Applications: Response to Culture Conditions. BioEnergy Research. 14(3): 954-963.

            52.Varshney P, et al. 2020. Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulareand Chlorella sorokiniana. Journal of Applied Phycology 32(1): 189-204.

            53.Vonshak A,et al. 2020. Photosynthetic characterization of two Nannochloropsisspecies and its relevance to outdoor cultivation. Journal of Applied Phycology 32(2): 909-922.

            54.Akma C, et al. 2020. Two-phase method of cultivating Coelastrellaspecies for increased production of lipids and carotenoids. Bioresource Technology Reports 9: 100366.

            55.Valev D,et al. 2020. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Current Microbiology 77(8) : 1590-1599.

          點擊進入北京易科泰生態技術有限公司展臺查看更多 來源:教育裝備采購網 作者:北京易科泰生態技術有限公司 責任編輯:逯紅棟 我要投稿
          校體購終極頁

          相關閱讀

          • 仟曉教育集團:用專業、愛和夢想點亮生命
            搜狐12-16
            樹立行業標桿,講好中國故事,傳遞中國聲音,充分展現騰飛的中國經濟、崛起的民族品牌和向上的企業家精神。近日,“崛起的民族品牌”專題系列節目對話海南仟曉教育科技有限公司創始人段麗曉女士...
          • 陜西渭南市開展2022年“千園達標”市級核查驗收工作
            渭南市教育局12-30
            “千園達標”工程是陜西省渭南市學前教育普及普惠督導評估工作的重要抓手,是引領全市幼兒園規范辦園行為、促進園所內涵發展的有力舉措。近日,渭南市政府教育督導委員會辦公室組織學前教育專家...
          • 寶雞市千陽縣“雙減”經驗全省推廣
            寶雞市教育局11-18
            “雙減”實施一年來,陜西省寶雞市千陽縣嚴格落實,積極推進,持續鞏固提高“雙減”工作水平。2022年11月14日,《陜西省“雙減”工作動態》第30期刊發了千陽縣扎實推進“作業革命”,減輕學生課...
          • 陜西蒲城縣推進“千園達標”縣級督導評估問題整改落實
            陜西省教育廳06-22
            為進一步加快“千園達標”創建工作,陜西省蒲城縣人民政府教育督導委員會辦公室多措并舉推進縣級督導評估問題整改落實。提高認識促推進。蒲城縣充分認識“千園達標”創建工作在推進縣域學前教育...
          • 依托現代科技手段解決紙質文獻酸化問題

            依托現代科技手段解決紙質文獻酸化問題
            教育裝備采購網06-16
            我國擁有悠久的歷史文明,其中一個重要的例證就是大量的古籍、檔案等紙質文獻。這些紙質文獻記錄了先民在長期實踐中獲得的智慧結晶和世事變遷,是社會...
          • 漢龍實業|我們的業務范圍是?

            漢龍實業|我們的業務范圍是?
            教育裝備采購網06-08
            北京市漢龍實業有限公司主營業務包括專業非接觸式書刊掃描儀、高精度古籍掃描儀、不拆卷案卷掃描儀、大幅面仿真復制掃描儀、縮微膠片拍攝機、縮微膠片...
          • 陜西渭南市以“千園達標”為抓手加快學前普及普惠創建步伐
            陜西省教育廳04-21
            2022年以來,陜西省渭南市緊盯“教育強市”重點任務,按照學前教育普及普惠四個維度(普及普惠水平、政府保障情況、幼兒園保教質量、社會認可)要求,以“千園達標”為抓手,通過目標導向、問題...
          • 走進漢龍文獻保護中心文獻修復室

            走進漢龍文獻保護中心文獻修復室
            教育裝備采購網03-15
            漢龍文獻保護中心正式成立于2016年,坐落在北京市歷史底蘊悠長、文化氛圍濃厚的東城區炮局胡同,毗鄰藏傳佛教圣地雍和宮,占地面積五百平米。目前,漢...

          版權與免責聲明:

          ① 凡本網注明"來源:教育裝備采購網"的所有作品,版權均屬于教育裝備采購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權范圍內使用,并注明"來源:教育裝備采購網"。違者本網將追究相關法律責任。

          ② 本網凡注明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網注明的"稿件來源",并自負版權等法律責任。

          ③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯系,否則視為放棄相關權利。

          校體購產品
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>