<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第八屆圖書館論壇 校體購2

          LI-2100全自動真空抽提系統的海外之旅

          教育裝備采購網 2021-10-28 11:24 圍觀2046次

            不同水體的氫氧穩定同位素可用于植物水分利用來源、水汽輸送、土壤水運移和補給機制、補給源和地下水機制、水體蒸發、植物蒸騰和土壤蒸發的區分、徑流的形成和匯合、重建古氣候等方面的研究。因而引起了水文學家,生態學家以及氣候學家等的廣泛關注。但問題是:在進行水穩定同位素測試之前如何將植物木質部和土壤中的水分無分餾的提取出來?

            LI-2100是LICA自主研發的一款全自動真空冷凝抽提系統,且已通過CE認證。從根本上解決了植物和土壤水分提取的難題,克服了傳統液氮冷卻的繁瑣,不僅可以防止同位素分餾,而且安全高效,不會對植物和土壤造成破壞??膳cLGR水同位素分析儀和質譜儀配套使用。許多科學家已經結合LI-2100和LGR的水同位素分析儀進行了諸多研究。

            從研發生產至今,LI-2100在國內已經銷售了近百臺,國內的科研工作者利用這臺儀器發表了諸多文獻,得到了用戶的眾多好評。

            隨著LI-2100在國內的廣泛應用及眾多文獻的發表,國外的一些科學家也開始關注理加公司研發生產的LI-2100,理加公司也積極在海外推廣該產品,由此拉開了LI-2100走出國門、走向海外的序幕。

            LI-2100在海外的安裝案例

            1. 巴西國家空間研究所(INPE)

            應用:利用LI-2100抽提土壤、植物中的水,進行同位素相關研究。

          LI-2100全自動真空抽提系統的海外之旅

          LI-2100全自動真空抽提系統的海外之旅

            科學家簡介:

            Laura De Simone Borma (勞拉·德·西蒙娜·博爾瑪)

            1988 年畢業于歐魯普雷圖聯邦大學土木工程專業,1991 年獲得里約熱內盧聯邦大學土木工程碩士學位,以及里約熱內盧聯邦大學土木工程-環境巖土工程博士學位(1998)。自 2009 年起在 INPE(國家空間研究所)擔任研究員,從事生態水文學和土壤物理學領域的工作,重點是實地觀察陸地和極端天氣事件對土壤-植物-大氣相互作用以及氣候變化、土地利用和覆蓋變化的影響。她目前是 INPE 的 PGCST(地球系統科學研究生)和 PGSER(遙感研究生)的教授。協調 CCST/INPE 的生態水文學 (LabEcoh) 和生物地球化學 (LapBio) 實驗室。她是 ISMC(國際土壤建模聯盟)的成員。她對巴西不同生物群落中土壤-植物-大氣相互作用、生態水文學以及水和氣候調節的生態系統服務領域的研究感興趣。LI-2100在海外的安裝案例

            2. 澳大利亞Flinders大學 College of Science and Engineering

            應用:利用LI-2100抽提土壤、植物中的水,進行同位素相關研究。

          LI-2100全自動真空抽提系統的海外之旅

            LI-2100在國內的部分安裝案例

          LI-2100全自動真空抽提系統的海外之旅

            1、沈陽氣象局

            2、中國林業科學研究院亞熱帶林業研究所

            3、廣西植物園

            4、中國科學院西雙版納熱帶植物園

            ...

            發表文獻

            1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.

            2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.

            3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peatdeposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017.

            4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 

            5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 

            6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.

            7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data.Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 

            8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.

            9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 

            10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.

            11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121.

            12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.

            13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650.

            14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.

            15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.

            16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique.Agriculture,Ecosystems and Environment, 276: 55-63. 

            17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning.Science of the Total Environment, 666: 685-693.

            18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylonspecies to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.

            19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287.

            20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region.Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199

            21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 

            22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831.

            23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.

            24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499

            25. Su PY, Zhang MJ, Qu DYet al. 2020. Contrasting water use strategies of Tamarix ramosissimain different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791; doi:10.3390/w12102791. 

            26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020

            27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321

            28. Xiao X, Zhang F, Li XYet al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.

            29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.

            30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.

            31. Yong LL, Zhu GF, Wan QZet al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711; doi:10.3390/w12102711. 

            32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China.Water, doi:10.3390/w12071923.

            33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995

            34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology,https://doi.org/10.1016/j.jhydrol.2020.125811. 

            35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593.

            36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731.

            37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.

            38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.

            39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.

            40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.

            41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River.Sustainability, 13, 9369.

            42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.

            43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.

            44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.

            45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.

            46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.

            47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.

            48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmeliniiforests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.

            49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807; https://doi.org/10.3390/su13020807.

            50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simoniiCarr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.

            51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.

            52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskiiand Salix psammophilain a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.

            53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.

            54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China.Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.

            55. 周盼盼, 張明軍, 王圣杰等. 2016. 蘭州城區綠化植物穩定氫氧同位素特征. 生態學雜志, 35(11): 2942-2951.

            56. 李亞飛, 于靜潔, 陸凱等. 2017. 額濟納三角洲胡楊和多枝檉柳水分來源解析. 植物生態學報, 41(5): 519-528.

            57. 李桐, 邱國玉. 2018. 基于穩定氫氧同位素的鹽水與純水蒸發差異分析. 熱帶地理, 38 (6): 857-865.

            58. 霍偉杰, 蒲俊兵, 李建鴻等. 2019. 斷陷盆地高原面典型巖溶洼地旱季土壤水氫氧同位素時空差異特征.中國巖溶,38(3): 307-317.

            59. 戴軍杰, 章新平, 羅紫東等. 2019. 長沙地區樟樹林土壤水穩定同位素特征及其對土壤水分運動的指示. 環境科學研究,32(6): 974-983.

            60. 胡士可和葉茂. 2020. 基于氫氧穩定同位素的檉柳水分來源分析. 廣東農業科學, 47(2):54-60.

            61. 李盼根, 王震洪, 李赫等. 2020. 基于穩定氫氧同位素的黃土高原不同生長年限油用牡丹水分來源研究. 水土保持通報, 40(1): 108-115.

            62. 史佳美, 余新曉, 賈國棟等. 2020. 不同動力學分餾系數對北京山區側柏葉片水δ18O的模擬. 應用生態學報, 31(6): 1827-1834.

            63. 蘇鵬燕, 張明軍, 王圣杰等. 2020. 基于氫氧穩定同位素的黃河蘭州段河岸植物水分來源. 應用生態學報, 31(6): 1835-1843.

            64. 孜爾蝶·巴合提, 賈國棟, 余新曉. 2020. 基于穩定同位素分析不同退化程度小葉楊水分來源. 應用生態學報, 31(6): 1807-1816

            65. 王露霞, 梁杏, 李靜. 2020. 基于典型鉆孔的江漢平原地下水成因分析. 地球科學, 45(2): 701-710.

            66. 王銳, 章新平, 戴軍杰等. 2020. 亞熱帶地區不同林分下植物水分利用的季節差異. 生態環境學報, 29(4): 665-675.

            67. 王銳, 章新平, 戴軍杰等. 2020.亞熱帶典型植物水分利用來源變化的水穩定同位素分析. 水土保持學報, 34(1): 202-209.

            68. 王銳, 章新平, 戴軍杰等. 2020. 亞熱帶濕潤區樟樹吸水的土層來源及研究方法對比. 水土保持學報, 34(5): 267-276.

            69. 郝帥和李發東. 2021. 艾比湖流域典型荒漠植被水分利用來源研究. 地理學報, 76(7): 1649-1661.

            70. 李雨芊, 孟玉川, 宋泓葦等. 2021. 典型林區水分氫氧穩定同位素在土壤-植物-大氣連續體中的分布特征. 應用生態學報, 32(6): 1928-1934.

            71. 劉秀強, 陳喜, 劉琴等. 2021. 西北干旱區尾閭湖過渡帶陸面蒸發和潛水對土壤水影響的同位素分析. 干旱區資源與環境, 35(6): 52-59.

            72. 王家鑫,  張明軍, 張宇等. 2021. 基于穩定同位素示蹤的黃河蘭州段河漫灘土壤水特征分析. 干旱區地理, 44(5): 1449-1458.

            73. 王銳, 章新平, 戴軍杰等. 2021.亞熱帶針闊混交林土壤-植物-大氣連續體(SPAC)中水穩定同位素特征. 生態環境學報, 30(6): 1148-1157.

            74. 王欣, 賈國棟,  鄧文平等. 2021.季節性干旱地區典型樹種長期水分利用特征與模式. 應用生態學報, 32(6): 1943-1950.

            75. 武昱鑫, 張永娥, 賈國棟. 2021.基于多種同位素模型的側柏林生態系統蒸散組分定量拆分應用生態學報, 32(6): 1971-1979.

            76. 張澤, 孫賀陽, 李陶珂等. 2021. 拆分典型草原群落蒸散組分方法研究. 中國草地學報, 43(4): 87-95.

            LI-2100特點

            1. 沿用傳統經典的真空蒸餾冷凍方法,數據可靠

            2. 無需液氮:壓縮機制冷,提高安全性

            3. 快速高效:一次可同時提取14個樣品

            4. 全自動抽提:全過程無人值守

            5. 安全便捷:自我斷電與自我保護功能

            6. 質量控制:故障提示與自動報警

            7. 全球首創:專利技術

            8. 氫氧穩定同位素前處理

          LI-2100全自動真空抽提系統的海外之旅

            性能指標

          提取速度

          >110 個/天

          可同時提取樣品數

          14 個

          系統真空度

          <1000 Pa

          系統漏率

          <1 Pa/s

          抽提率

          >98%

          回收率

          99%-101%

          真空泵

          5 L/min, 24 V, 最大壓力, 0.3bar

          制冷

          無需液氮,壓縮機與冷阱結合,最低制冷溫度可達 -95℃

          制熱

          電磁制熱,最高制熱溫度可達 130℃

          顯示與操作

          TFT LCD (7寸, 800*480; 65536). 觸摸式人機友好交互界面

          自動保護

          溫度過高或超出設定溫度值,加熱系統自動關閉

          自動報警

          制冷系統故障提示并報警與真空泄露故障報警

          尺寸

          90 cm (H)×74 cm (W)×110 cm (D)

          重量

          120 Kg

            LI-2100是國際上第一款全自動植物土壤真空抽提系統,也是國內全自動植物土壤真空抽提系統的領導品牌。LI-2100為客戶取得更為準確的數據提供了有利的方法和保障。理加公司專注國產生態儀器的研發和生產,是國內生態領域自主研發比較早、國產化比較好的一家公司。相信隨著加大研發的投入和市場及時間的積累,理加公司一定會生產出更多、更好的生態儀器,給更多的國內外客戶提供更有價值的產品。

            海外市場的拓展不是一條容易走的路,但理加會堅定地走出去。

          點擊進入北京理加聯合科技有限公司展臺查看更多 來源:教育裝備采購網 作者:北京理加聯合科技有限公司 責任編輯:逯紅棟 我要投稿
          校體購終極頁

          相關閱讀

          • 理加聯合參加第六屆氮素生物地球化學循環論壇
            教育裝備采購網04-18
            2025年4月13日——由中國土壤學會氮素工作組主辦,南京農業大學、中國科學院南京土壤研究所等四家單位聯合承辦的第六屆氮素生物地球化學循環學術論壇今日在南京圓滿閉幕。以“氮循環與行星安全邊...
          • 理加優秀論文獎勵基金獎勵辦法
            教育裝備采購網03-12
            01獎勵基金名稱理加生態優秀論文獎勵基金02目的與意義北京理加聯合科技有限公司是一家專注于生態環境科學研究的專業公司。我們代理、研發、生產和銷售高品質的生態環境儀器,并為客戶提供卓越的...
          • 更新教學設備 | 理加聯合攜解決方案推動政策落地
            教育裝備采購網03-22
            日前,國務院印發《推動大規模設備更新和消費品以舊換新行動方案》(以下簡稱《行動方案》)。堅持市場為主、政府引導,鼓勵先進、淘汰落后,標準引領、有序提升,實施設備更新、消費品以舊換新...
          • 中國北方壽光設施蔬菜生產系統高土壤N2O排放的探討

            中國北方壽光設施蔬菜生產系統高土壤N2O排放的探討
            教育裝備采購網01-22
            在當今社會,人們越來越關注氣候變化和環境保護,而農業生產對這些問題有著重要的影響。GVP系統(GreenhouseVegetableProductionSystem)作為一種新型...
          • 生態系統多要素觀測技術學術交流會圓滿成功

            生態系統多要素觀測技術學術交流會圓滿成功
            教育裝備采購網09-06
            2023年8月29日,碳中和背景下生態系統多要素觀測技術學術交流會在線上成功舉辦。來自中國科學院、清華大學、北京大學、北京林業大學、中國地質大學、中...
          • 生態系統多要素觀測技術學術交流會(二輪通知)
            教育裝備采購網08-14
            碳中和背景下生態系統多要素觀測技術學術交流會會議時間:2023年8月29日參會方式:線上承辦單位主辦方:國家林業和草原局西南巖溶石漠化治理國家創新聯盟北京理加聯合科技有限公司協辦方:北京林...
          • 碳中和背景下生態系統多要素觀測技術學術交流會
            教育裝備采購網08-07
            碳中和背景下生態系統多要素觀測技術學術交流會會議時間:2023年8月29日參會方式:線上承辦單位主辦方:國家林業和草原局西南巖溶石漠化治理國家創新聯盟北京理加聯合科技有限公司協辦方:北京林...
          • 高寒泥炭地微生物CAZymes基因和凈CO<sub>2</sub>交換對5年連續極端干旱事件的非同步響應

            高寒泥炭地微生物CAZymes基因和凈CO2交換對5年連續極端干旱事件的非同步響應
            教育裝備采購網06-12
            PS9000|高寒泥炭地微生物CAZymes基因和凈CO2交換對5年連續極端干旱事件的非同步響應高寒泥炭地是一種獨特的生態系統,主要分布在高緯度地區,如北極和...

          版權與免責聲明:

          ① 凡本網注明"來源:教育裝備采購網"的所有作品,版權均屬于教育裝備采購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權范圍內使用,并注明"來源:教育裝備采購網"。違者本網將追究相關法律責任。

          ② 本網凡注明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網注明的"稿件來源",并自負版權等法律責任。

          ③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯系,否則視為放棄相關權利。

          校體購產品
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>