大小鼠作為常用的實驗室動物,是探索一些情感和動機功能基本機制的理想模型。這些研究主要采用顯性行為測量,如動物會靠近獲取滿足感,反之逃離。而之前的動機和情感狀態測量是通過諸如心率、腎上腺酮分泌、或大腦動物等生理指標進行推斷的。在此基礎之上,可以通過獲取動物的超聲發生(USV)進行兩個方面的行為學研究,一是動物的情感狀態,二是動物社交性行為,如交配、育幼、嬉戲、攻擊及防衛等),可廣泛用于生物醫學、神經科學、實驗心理學、代謝相關研究等。
2016年8月30日,北京易科泰生態技術有限公司工程師在中科院遺傳與發育生物學研究所成功安裝調試嚙齒類超聲(USV)監測系統,該系統可用于基因操作小鼠模型的精神分裂癥、自閉癥和神經退行性疾病的發病機制研究。
遺傳所博士在認真學習儀器數據記錄與分析
大鼠超聲發生(USV)記錄過程
50-KHz USVs超生發生結果
可卡因誘導的50-kHz USVs
需要強調的是,該聲譜分析技術可以與動物呼吸代謝技術(包括SSI動物呼吸代謝技術、Promethion動物行為與代謝監測技術)及環境監控因素連用,更全面地監測動物的進食模式、行為譜、動物睡眠活動、運動與代謝、溫度心率、動物學習記憶行為、動物情感與動機行為、新陳代謝與影響因子等,還可以與其它更多的動物行為、生理、生物醫學儀器連用。
案例1 德國馬普鳥類學院科學家采用“SSI動物呼吸代謝技術與USV動物超聲發生” 技術,于2013年在國際生理學前沿雜志發表了“Metabolic costs of bat echolocation in a non-foraging context support a role in communication”一文,介紹了蝙蝠發出回聲的能量消耗策略,以及USV超聲發生在蝙蝠社交通訊中的科學假設。
7只小牛頭犬蝠回聲與能量消耗相關性
案例2 澳大利亞墨爾本大學神經科學與精神健康研究所科學家采用USV超聲發生等技術,于2016年在Transl Psychiatry精神病學雜志發表“Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring”一文,主要介紹了糖皮質激素在母體-后代應激誘導特征傳遞過程中的分子機制。
不同處理條件下的鳴叫次數
部分參考文獻:
1. Belagodu A P, Johnson A M, Galvez R. Characterization of ultrasonic vocalizations of Fragile X mice[J]. Behavioural brain research, 2016, 310: 76-83.
2. Carter G G, Wilkinson G S. Common vampire bat contact calls attract past food-sharing partners[J]. Animal Behaviour, 2016, 116: 45-51.
3. Celi M, Filiciotto F, Maricchiolo G, et al. Vessel noise pollution as a human threat to fish: assessment of the stress response in gilthead sea bream (Sparus aurata, Linnaeus 1758)[J]. Fish Physiology and Biochemistry, 2016, 42(2): 631-641.
4. Charrier I, Pitcher B J, Harcourt R G. Vocal recognition of mothers by Australian sea lion pups: individual signature and environmental constraints[J]. Animal Behaviour, 2009, 78(5): 1127-1134.
5. Corcoran A J, Woods H A. Negligible energetic cost of sonar jamming in a bat–moth interaction[J]. Canadian Journal of Zoology, 2015, 93(4): 331-335.
6. Corcoran A J, Woods H A. Negligible energetic cost of sonar jamming in a bat–moth interaction[J]. Canadian Journal of Zoology, 2015, 93(4): 331-335.
7. Cordes N, Schmoll T, Reinhold K. Risk-taking behavior in the lesser wax moth: disentangling within-and between-individual variation[J]. Behavioral Ecology and Sociobiology, 2013, 67(2): 257-264.
8. Dechmann D K N, Wikelski M, van Noordwijk H J, et al. Metabolic costs of bat echolocation in a non-foraging context support a role in communication[J]. How nature shaped echolocation in animals, 2014: 127.
9. Di Stefano V, Maccarrone V, Buscaino G, et al. Experimental procedure for the evaluation of behaviour and biochemical stress of Palinurus elephas exposed to boat noise pollution[J]. 2016.
10. Holt M M, Dunkin R C, Noren D, et al. Are there metabolic costs of vocal responses to noise in marine mammals?[C]//Proceedings of Meetings on Acoustics. Acoustical Society of America, 2013, 19(1): 010060.
11. Holt M M, Noren D P, Williams T M. The Metabolic Cost of Click Production in Bottlenose Dolphins[R]. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION SEATTLE WA NORTHWEST FISHERIES SCIENCE CENTER, 2014.
12. Holt M M, Noren D P, Williams T M. The Metabolic Cost of Sound Production in Odontocete Cetaceans[R]. NATIONAL MARINE FISHERIES SERVICE SEATTLE WA NORTHWEST AND ALASKA FISHERIES CENTER, 2011.
13. Imai R, Sawai A, Hayase S, et al. A quantitative method for analyzing species-specific vocal sequence pattern and its developmental dynamics[J]. Journal of Neuroscience Methods, 2016, 271: 25-33.
14. Kim H, Son J, Yoo H, et al. Effects of the Female Estrous Cycle on the Sexual Behaviors and Ultrasonic Vocalizations of Male C57BL/6 and Autistic BTBR T tf/J Mice[J]. Experimental Neurobiology, 2016, 25(4): 156-162.
15. Liska A, Gomolka R, Sabbioni M, et al. Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity[J]. bioRxiv, 2016: 060335.
16. Maier E Y, Ahrens A M, Ma S T, et al. Cocaine deprivation effect: cue abstinence over weekends boosts anticipatory 50-kHz ultrasonic vocalizations in rats[J]. Behavioural brain research, 2010, 214(1): 75-79.
17. Reno J M, Thakore N, Gonzales R, et al. Alcohol‐Preferring P Rats Emit Spontaneous 22‐28 kHz Ultrasonic Vocalizations that are Altered by Acute and Chronic Alcohol Experience[J]. Alcoholism: Clinical and Experimental Research, 2015, 39(5): 843-852.
18. Robillard T, Ichikawa A. Redescription of two Cardiodactylus species (Orthoptera, Grylloidea, Eneopterinae): the supposedly well-known C. novaeguineae (Haan, 1842), and the semi-forgotten C. guttulus (Matsumura, 1913) from Japan[J]. Zoological science, 2009, 26(12): 878-891.
19. Rouse M L, Ball G F. Lesions targeted to the anterior forebrain disrupt vocal variability associated with testosterone‐induced sensorimotor song development in adult female canaries, Serinus canaria[J]. Developmental neurobiology, 2016, 76(1): 3-18.
20. Sauvé C C, Beauplet G, Hammill M O, et al. Mother–pup vocal recognition in harbour seals: influence of maternal behaviour, pup voice and habitat sound properties[J]. Animal Behaviour, 2015, 105: 109-120.
21. Shapiro A D, Slater P J B, Janik V M. Call usage learning in gray seals (Halichoerus grypus)[J]. Journal of Comparative Psychology, 2004, 118(4): 447.
22. Short A K, Fennell K A, Perreau V M, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring[J]. Translational psychiatry, 2016, 6(6): e837.
23. Symes L B, Page R A, ter Hofstede H M. Effects of acoustic environment on male calling activity and timing in Neotropical forest katydids[J]. Behavioral Ecology and Sociobiology, 2016: 1-11.
24. Travis C M G, Genovese R F. Cat-Exposure Results in Significantly More Elicited Alarm Calls (22kHz Ultrasonic Vocalizations, USVs) Compared to Snake-, Ferret-, or Sham-Exposure During a Rodent Model of Traumatic Stress[J]. The FASEB Journal, 2016, 30(1 Supplement): 938.9-938.9.