<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第三屆體育論壇1180*60
          教育裝備展示廳
          www.dongsenyule.com
          教育裝備采購網首頁 > 產品庫 > 產品分類大全 > 實驗室設備 > 實驗儀器及裝置 > 試樣制備及實驗輔助設備

          高溫高壓光學浮區法單晶爐

          高溫高壓光學浮區法單晶爐
          <
          • 高溫高壓光學浮區法單晶爐
          >
          產品報價: 面議
          留言咨詢
          加載中
          SciDre
          HKZ
          高教
          德國
          詳細說明

          高溫高壓光學浮區法單晶爐

          德國SciDre公司推出的高溫高壓光學浮區法單晶爐能夠提供2200–3000℃以上的生長溫度,晶體生長腔壓力可達300bar,甚至10-5mbar的高真空。適用于生長各種超導材料單晶,介電和磁性材料單晶,氧化物及金屬間化合物單晶等。

          應用領域

          適用于生長各種超導材料單晶,介電和磁性材料單晶,氧化物及金屬間化合物單晶等。

          耐高溫、耐高壓、高真空、

          高透光率、拆裝簡便的樣品腔

          由德國弗勞恩霍夫應用光

          和精密工程研究所優化設計的高反射率鏡面,

          鏡體位置可由高精度步進馬達控制調節

          光闌式光強控制器

          更方便地調節熔區溫度,延長燈泡壽命 

          仿真化觸屏控制軟件

          界面友好,操作簡單

          熔區測溫選件測溫技術

          可實時監測加熱區溫度

          多路立氣路控制選件

          可控制N2、O2、Ar、空氣等的流量和壓力, 

          并可對氣體進行比例混合與熔區進行反應

          氣體除雜選件

          可使高壓氬氣中的氧含量達到10-12ppm

          退火選件

          可對離開熔區的單晶棒提供

          高達1100℃退火溫度和高壓氧環境

            SciDre單晶爐特點

            采用垂直式光路設計

            采用高照度短弧氙燈,多種功率規格可選

            熔區溫度:>3000℃

            熔區壓力:10bar/50bar/100bar/150bar/300bar等多種規格可選

            氧氣/氬氣/氮氣/空氣/混合氣等多種氣路可選

            采用光柵控制技術,加熱功率從0-連續可調

            樣品腔可實現低至10-5mbar真空環境

            豐富的可升選件

            SciDre單晶爐技術參數

            熔區溫度:高達2000 - 3000℃以上

            熔區壓力:高至10、50、100、150、300 bar可選

            熔區真空:1*10-2 mbar或 1*10-5 mbar可選

            熔區氣氛:Ar、O2、N2等可選

            氣體流量:0.25 – 1 L/min流量可控

            氙燈功率:3kW至15kW可選

            料棒臺尺寸:6.8mm或9.8mm可選

            拉伸速率:0.1-50mm/h

            調節速率:0.6 mm/s

            拉伸尺寸:130mm,150mm,195mm可選

            旋轉速率:0-70rpm

            用電功率:400V三相 63A 50Hz 

            主機尺寸:330cm*163cm*92cm (不同規格略有差異)

            發表文章

            1. (2020)Single crystal growth and luminescent properties of YSH:Eu scintillator by optical floating zone method  Chemical  Physics Letters, Volume 738, 136916

            2. (2020)Anisotropic character of the metal-to-metal transition in Pr4Ni3O10   Phys. Rev. B 101, 104104

            3. (2020)Synthesis of a New Ruthenate Ba26Ru12O57 Crystals 2020, 10(5), 355

            4. (2020)Synthesis and characterization of bulk Nd1?xSrxNiO2 and Nd1?xSrxNiO3  Phys. Rev. Materials 4, 084409

            5. (2020)Magnetic phase diagram and magnetoelastic coupling of NiTiO3 Phys. Rev. B 101, 195122

            6. (2019)High pO2 Floating Zone Crystal Growth of the Perovskite Nickelate PrNiO3 Crystals 2019, 9(7), 324

            7. (2019)Magnetic properties of high-pressure optical floating-zone grown LaNiO3 single crystals Journal of Crystal Growth Volume 524, 15 October 2019, 125157

            8. (2019)Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce) Phys. Rev. Materials 3, 024204

            9. (2019)Pushing boundaries: High pressure, supercritical optical floating zone materials discovery Journal of Solid State Chemistry 270 (2019): 705-709

            10. (2018). Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nature Communications 9:43

            11. (2017). Single-crystal growth and physical properties of 50% electron-doped rhodate Sr 1.5 La 0.5 RhO 4 Physical Review Materials 1(4), 044005

            12. (2017). Single crystal growth and structural evolution across the 1st order valence transition in (Pr1? yYy) 1? xCaxCoO3-δJournal of Solid State Chemistry 254, 69-74

            13. (2017). Large orbital polarization in a metallic square-planar nickelate. Nature Physics 13, 864–869

            14. (2017). High-Pressure Floating-Zone Growth of Perovskite Nickelate LaNiO3 Single Crystals. Crystal Growth & Design 17(5), 2730-2735.

            15. (2017). High-pressure optical floating-zone growth of Li(Mn,Fe)PO4 single crystals. Journal of Crystal Growth, 462, 50-59.

            16. (2016). Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562.

            17. (2016). Stacked charge stripes in quasi-2D trilayer nickelate La4Ni3O8. PNAS 2016 113 (32) 8945-8950.

            18. (2016). Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4. Crystals, 6(8), 98.

            19. (2015). Floating zone growth of Ba-substituted ruthenate Sr2?xBaxRuO4. Journal of Crystal Growth, 427, 94-98.

            20. (2015). High pressure floating zone growth and structural properties of ferrimagnetic quantum paraelectric BaFe12O19. APL Materials 3, 062512.

            21. (2015). Impact of local order and stoichiometry on the ultrafast magnetization dynamics of Heusler compounds. Journal of Physics D: Applied Physics, 48(16), 164016.

            22. (2014). Brownmillerite Ca2Co2O5: Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions. Chemistry of Materials, 26(24), 7172-7182.

            23. (2014). Low-temperature properties of single-crystal CrB2. Physical Review B, 90(6), 064414.(Also on archiv.org.)

            24. (2014). Effect of annealing on spinodally decomposed Co2CrAl grown via floating zone technique. Journal of Crystal Growth, 401, 617-621.(Also on arxiv.org.)

            25. (2013). de Haas–van Alphen effect and Fermi surface properties of single-crystal CrB2. Physical Review B, 88(15), 155138. (Also on arxiv.org.)

            26. (2013). Phase Dynamics and Growth of Co2Cr1–xFexAl Heusler Compounds: A Key to Understand Their Anomalous Physical Properties. Crystal Growth & Design, 13(9), 3925-3934.

            27. (2011). Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Applied Physics Letters, 98(25), 252501.

            28. (2011). Challenges in the crystal growth of Li2CuO2 and LiMnPO4. Journal of Crystal Growth, 318(1), 995-999.

            29. (2011). Self-flux growth of large EuCu 2 Si 2 single crystals. Journal of Crystal Growth, 318(1), 1043-1047.

            30. (2010). Influence of heat distribution and zone shape in the floating zone growt·h of selected oxide compounds. Journal of materials science, 45(8), 2223-2227.

            31. (2009). Highly ordered, half-metallic Co2FeSi single crystals. Applied Physics Letters, 95(16), 161903.

            32. (2009). Single-crystal growth of LiMnPO4 by the floating-zone method. Journal of Crystal Growth, 311(5), 1273-1277(Also on uni-heidelberg.de.)

            33. (2008). Crystal growth of rare earth-transition metal borocarbides and silicides. Journal of Crystal Growth, 310(7), 2268-2276.

            用戶單位

            中國科學院物理研究所

            中國科學院固體物理研究所

            北京師范大學

            中山大學

            南昌大學

            上海大學

          留言咨詢
          姓名
          電話
          單位
          信箱
          留言內容
          提交留言
          聯系我時,請說明是在教育裝備采購網上看到的,謝謝!
          同類產品推薦
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>