MC1000 8通道藻類培養與在線監測系統由8個100ml藻類培養試管、水浴控溫系統、LEDs光源控制系統及光密度和溶解氧(選配)在線監測系統等組成,可用于藻類培養與控制實驗、梯度對比實驗等,適于水體生態毒理學研究檢測、藻類生理生態研究、水生態研究等,其主要功能特點如下:
1. 8通道藻類培養,每個藻類培養試管可培養85ml藻液
2. LEDs光源,可對每個培養試管獨立調節控制和設置光強度和時間,如晝夜變化等
3. 光密度在線監測,包括OD680、OD735,監測數據自動存儲
4. 溶解氧在線監測(備選)以測量分析藻類光合作用等
5. 溫度、光照控制可用戶設置不同的程序模式
6. 氣泡混勻:可通過調節閥手動調節氣流量以對培養試管內的藻類進行混勻
7. 可選配O2/CO2監測系統,在線監測藻類光合放氧和CO2吸收
8. 可選配藻類熒光測量模塊
應用領域:
l 多通道同步藻類培養
l 同步梯度脅迫實驗
l 培養條件優化
l 控制培養條件與藻類生長動力學監測
儀器型號:
MC 1000:僅進行藻類培養,不能監測OD
MC 1000-OD:可同時進行藻類培養和OD監測
技術指標:
1. 藻類同步培養通道:8個
2. 培養管容量:100ml,建議培養容量85ml
3. 在線即時監測參數:分別監測每個培養管的OD680和OD720,數據自動保存到主機內存中,PIN光電二極管監測器,665-750nm帶通濾波器(MC 1000-OD)
4. OD測量程序:將主機內存中的OD數據下載到電腦中并以圖表形式顯示,數據可導出為TXT或Excel文件
5. 精確控溫范圍:標準配置20℃ - 60℃,可選配置15℃-60℃(需加配制冷單元)
6. 加熱系統:150W筒形加熱器
7. 水浴體積:5L
8. 水浴自動補水模塊(選配):水浴水位因蒸發降低后可自動補水
9. 光源系統:光強0-可調,冷白光LED(標配),強度可達900μmol/m2/s;暖白光LED(可選),光強可達750μmol/m2/s;其他顏色LED可定制
10. 控光模式:可靜態或動態設置光照程序,如正弦、晝夜節律、脈沖等;可選配用戶自定義程序,支持用戶編輯多達224步的不同光強和持續時間的光周期
11. 控制單元顯示屏:可調控培養程序和顯示數據
12. 氣流調控:通過多管調節閥對8個培養管手動獨立調控氣體流量
13. PBR實時在線監測分析軟件(選配):
a) 通過PBR軟件動態調控光照和溫度模式
b) 通過光密度(OD680、OD720)變化實時監測藻類生物量
c) 對生長速率進行實時回歸分析
d) 多數據管理功能(過濾、查找、多重導出)
e) 可將測量數據、培養程序和其他信息保存到數據庫中
f) 通過GUI圖形用戶界面設置培養程序并在線顯示測量數據圖
g) 數據可導出為CSV、Excel或XML文件
14. GMS高精度氣體混合系統(選配):可控制氣體流速和成分,標配為控制氮氣/空氣和二氧化碳,氣源需用戶自備
15. O2/CO2監測系統(選配):8通道續批式監測藻類CO2吸收或光合放氧通量:
a) 氧氣分析測量:氧氣測量范圍0-100%,分辨率0.0001%,精確度優于0.1%,溫度、壓力補償,數碼過濾(噪音)0-50秒可調,具兩行文字數字LCD背光顯示屏,可同時顯示氧氣含量和氣壓
b) 二氧化碳分析測量:雙波長非色散紅外技術,測量范圍0-5%或0-15%兩級選擇(雙程),分辨率優于0.0001%或1ppm(可達0.1ppm),精確度1%,通過軟件溫度補償,具兩行文字數字LCD背光顯示屏,可同時顯示CO2含量和氣壓,具數碼過濾(噪音)功能
c) 氣體抽樣與氣路切換:具備隔膜泵、氣流控制針閥和精密流量計,氣路自動定時切換功能
16. 藻類熒光測量模塊(選配):用于測量藻類熒光參數以反映藻類生理狀態及濃度,熒光測量程序包括Ft,QY,OJIP-test,NPQ、光響應曲線等,可選配探頭式測量或試管式測量:
a) 探頭式測量:具備光纖測量探頭,可插入培養液中原位測量藻類熒光參數
b) 試管式測量:具備測量杯,可取樣精確測量藻類熒光參數及光密度值
17. 通訊方式:RS232串口
18. 尺寸:71×33×21 cm
19. 重量:13kg
20. 供電:110-240V
應用案例:
不同CO2濃度下衣藻Chlamydomonas的生長曲線(Zhang,2014)
聚球藻Synechococcus野生型和△nblA的生長曲線(Yu,2015)
產地:捷克
參考文獻:
1. Yu J, et al. 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports 5:8132, DOI: 10.1038/srep08132
2. Grama B S, et al. 2015. Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustainable Chem. Eng. DOI: 10.1021/acssuschemeng.5b01544
3. Davis R W, et al. 2015. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source. Bioresource Technology 198, 577-585
4. Patzelt D J, et al. 2015. Hydrothermal gasification of Acutodesmus obliquus for renewable energy production and nutrient recycling of microalgal mass cultures. Journal of Applied Phycology, 27(6), 2239-2250
5. Patzelt D J, et al. 2015. Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification of Acutodesmus obliquus. Algal Research 10, 164-171
6. Flowers J M, et al. 2015. Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green Alga Chlamydomonas reinhardti. The Plant Cell 27(9), 2353-2369
7. Makower A K, et al. 2015. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81(2), 544-554
8. Vu M T T, et al. 2015. Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. Journal of Applied Phycology, doi:10.1007/s10811-015-0722-2
9. Nikolaou A, et al. 2015. A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. Journal of Biotechnology 194, 91-99. DOI: 10.1016/j.jbiotec.2014.12.00
10. Gris B, et al. 2015. Optimizing biomass and high value compound production in Cyanobacterium aponinum PCC 10605. Societa Botanica Italiana. Venezia.
11. Gérin S, et al. 2014. Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Systems Biology 8, 96
12. Hasan R, et al. 2014. Bioremediation of Swine Wastewater and Biofuel Potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175
13. ®antr®®ek J, et al. 2014. Stomatal and pavement cell density linked to leaf internal CO2 concentration. Annals of Botany 114, 191-202
14. Zhang B, et al. 2014. Characterization of a Native Algae Species Chlamydomonas debaryana: Strain Selection, Bioremediation Ability, and Lipid Characterization. BioResources 9(4), 6130-6140
15. Grama B S, et al. 2014. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresource Technology 151, 297-305
16. Grama B S, et al. 2014. Characterization of fatty acid and carotenoid production in an Acutodesmus microalga isolated from the Algerian Sahara. Biomass and Bioenergy 69, 265-275
17. Miazek K, et al. 2014. Growth of Chlorella in the presence of organic carbon: A photobioreactor study. Conference – Process of Technics 2014 – Prague