光合電子傳遞photosynthetic electron transport
光合作用中,受光激發推動的電子從H2O到輔酶Ⅱ(NADP+)的傳遞過程。光合色素吸收光能后,把能量聚集到反應中心,一種特殊狀態的葉綠素a分子,引起電荷分離和光化學反應。一方面將水氧化,放出氧氣;另一方面把電子傳遞給輔酶Ⅱ(NADP+),將它還原成NADPH,其間經過一系列中間(電子)載體。綠色植物中,光合電子傳遞由兩個光反應系統相互配合來完成。一個是吸收遠紅光的特殊葉綠素a分子,最大吸收峰在700nm處,稱為P700。由P700和其他輔助復合物組成的光反應系統,稱光系統I(PSI)。
另一個是吸收紅光的特殊葉綠素a分子,其吸收峰在680nm處,稱為P680。由P680和其他輔助復合物組成的光反應系統,稱光系統Ⅱ(PSⅡ)。兩個光系統之間由細胞色素b6-f和鐵硫蛋白組成的復合物連接。在外加人工電子受體和供體的情況,光合鏈上的電子傳遞可分段進行。電子傳遞可偶聯氧的產生(水的光解)或消耗(O2作電子受體)。因此可用氧電極測定加入不同電子供體和受體之后氧氣的變化反映光合電子傳遞的分段反應。
上圖是光合電子傳遞模式圖。紅色字體:DPC、DCBQ、DCP和MV代表人工電子受體和供體。DCMU是電子從PSII傳遞到PQ庫的抑制劑。1. 從水到甲基紫精(MV)的電子傳遞(耗O2反應:每傳遞4個電子消耗1個O2,終產物為H2O2)2. 從二氯酚靛酚(DCPIP)到甲基紫精的電子傳遞(耗O2反應:每傳遞一個電子消耗1個O2)。3. 從水到對二氯苯醌DCBQ的電子傳遞(放氧反應:每傳遞4個電子釋放1個O2)。4. 從二苯卡巴肼(DPC)到甲基紫精的電子傳遞(耗氧反應:傳遞1個電子消耗1個O2)。下表是測定光合電子傳遞分段反應所需的體系和試劑:
基質(低滲介質) | 分段反應過程 | 反應體系 | 電子傳遞類型 | 備注 |
50mmol/L Tricine-KOH 50mmol/L KCl 5mmol/L MgCl2 PH 7.6 20-50μg chl/ml 葉綠體 | 完整的 電子傳遞過程 | 50μmol/L MV 5mmol/L NH4Cl 2mmol/L NaN3 | H2O→MV | 耗氧反應 |
PSI活性 | 50μmol/L MV 5mmol/L NH4Cl 2mmol/L NaN3 50μmol/L DCMU 2mmol/L DCPIP | DCPIP→MV | 耗氧反應 | |
PSII活性 | 5mmol/L NH4Cl 4mmol/L K3Fe(CN)6 1mmol/LDCBQ | H2O→DCBQ | 放氧反應 | |
PSI和PSII活性 | 5mmol/L NH4Cl 2mmol/L NaN3 0.5mmol/L DPC | DCP→MV | 耗氧反應 |
注意?。?!由于實驗樣品和條件的差異,測定光合電子傳遞分段反應所使用的人工電子供體、受體以及反應體系會有所不同,具體試劑和體系請根據實際情況選定。
文獻目錄:
oBaker, N. R., & Leech, R. M. (1977).Development of photosystem I and photosystem II activities in leaves oflight-grown maize (Zea mays). PlantPhysiology, 60(4), 640-644.
oBaldi, P., Muthuchelian, K., & La Porta, N.(2012). Leaf plasticity to light intensity in Italian cypress (Cupressussempervirens L.): Adaptability of a Mediterranean conifer cultivated in theAlps. Journal of Photochemistry andPhotobiology B: Biology, 117,61-69.
oChen, S., Zhou, F., Yin, C., Strasser, R. J.,Yang, C., & Qiang, S. (2011). Application of fast chlorophyll afluorescence kinetics to probe action target of 3-acetyl-5-isopropyltetramicacid. Environmental and ExperimentalBotany, 73, 31-41.
oChen, Y. E., Su, Y. Q., Mao, H. T., Nan, W.,Zhu, F., Yuan, M., ... & Yuan, S. (2018). Terrestrial plants evolvehighly-assembled photosystem complexes in adaptation to light shifts. Frontiers in plant science, 9, 1811.
oChen, Z., Jiang, H. B., Gao, K., & Qiu, B.S. (2019). Acclimation to low ultraviolet‐B radiation increases photosystem Iabundance and cyclic electron transfer with enhanced photosynthesis and growthin the cyanobacterium Nostoc sphaeroides. Environmentalmicrobiology.
oCiornii, D., K?lsch, A., Zouni, A., &Lisdat, F. (2019). Exploiting new ways for a more efficient orientation andwiring of PSI to electrodes: A fullerene C70 approach. Electrochimica Acta, 299,531-539.
oDall'Osto, L., ünlü, C., Cazzaniga, S., &van Amerongen, H. (2014). Disturbed excitation energy transfer in Arabidopsisthaliana mutants lacking minor antenna complexes of photosystem II. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 1837(12),1981-1988.
oDing, S., Lei, M., Lu, Q., Zhang, A., Yin, Y.,Wen, X., ... & Lu, C. (2012). Enhanced sensitivity and characterization ofphotosystem II in transgenic tobacco plants with decreased chloroplastglutathione reductase under chilling stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(11), 1979-1991.
oDobrikova, A. G., & Apostolova, E. L.(2015). Damage and protection of the photosynthetic apparatus from UV-Bradiation. II. Effect of quercetin at different pH. Journal of plant physiology, 184,98-105.
oGandini, C., Schmidt, S. B., Husted, S.,Schneider, A., & Leister, D. (2017). The transporter Syn PAM 71 is locatedin the plasma membrane and thylakoids, and mediates manganese tolerance inSynechocystis PCC 6803. New Phytologist,215(1), 256-268.\
oHakkila, K., Antal, T., Rehman, A. U., Kurkela,J., Wada, H., Vass, I., ... & Tyystj?rvi, T. (2014). Oxidative stress andphotoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC6803. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 1837(2),217-225.
oKiss, é., Knoppová, J., Aznar, G. P., Pilny,J., Yu, J., Halada, P., ... & Komenda, J. (2019). A photosynthesis-specificrubredoxin-like protein is required for efficient association of the D1 and D2proteins during the initial steps of photosystem II assembly. The Plant Cell, 31(9), 2241-2258.
oKubota, H., Sakurai, I., Katayama, K.,Mizusawa, N., Ohashi, S., Kobayashi, M., ... & Wada, H. (2010).Purification and characterization of photosystem I complex from Synechocystissp. PCC 6803 by expressing histidine-tagged subunits. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(1), 98-105.
oLeganes, F., Martinez-Granero, F.,Mu?oz-Martín, M. á., Marco, E., Jorge, A., Carvajal, L., ... &Fernandez-Pinas, F. (2014). Characterization and responses to environmentalcues of a photosynthetic antenna-deficient mutant of the filamentous cyanobacteriumAnabaena sp. PCC 7120. Journal of plantphysiology, 171(11), 915-926.
oLi, Z., Wang, W., Ding, C., Wang, Z., Liao, S.,& Li, C. (2017). Biomimetic electron transport via multiredox shuttles fromphotosystem II to a photoelectrochemical cell for solar water splitting. Energy & Environmental Science, 10(3), 765-771.
oLidon, F. C., & Ramalho, J. C. (2011).Impact of UV-B irradiation on photosynthetic performance and chloroplastmembrane components in Oryza sativa L. Journalof Photochemistry and Photobiology B: Biology, 104(3), 457-466.
oLu, C., & Vonshak, A. (1999).Characterization of PSII photochemistry in salt-adapted cells of cyanobacteriumSpirulina platensis. The New Phytologist,141(2), 231-239.
oMadireddi, S. K., Nama, S., Devadasu, E., &Subramanyam, R. (2019). Thylakoid membrane dynamics and state transitions inChlamydomonas reinhardtii under elevated temperature. Photosynthesis research, 139(1-3),215-226.
oPang, N., Xie, Y., Oung, H. M. O., Sonawane, B.V., Fu, X., Kirchhoff, H., ... & Chen, S. (2019). Regulation andstimulation of photosynthesis of mixotrophically cultured Haematococcuspluvialis by ribose. Algal Research, 39, 101443.
oPeng, X., Deng, X., Tang, X., Tan, T., Zhang,D., Liu, B., & Lin, H. (2019). Involvement of Lhcb6 and Lhcb5 in PhotosynthesisRegulation in Physcomitrella patens Response to Abiotic Stress. International journal of molecular sciences,20(15), 3665.
oPetrova, N., Stoichev, S., Paunov, M.,Todinova, S., Taneva, S. G., & Krumova, S. (2019). Structural organization,thermal stability, and excitation energy utilization of pea thylakoid membranesadapted to low light conditions. ActaPhysiologiae Plantarum, 41(12),188.
oRehman, A. U., Kodru, S., & Vass, I.(2016). Chloramphenicol mediates superoxide production in photosystem II andenhances its photodamage in isolated membrane particles. Frontiers in Plant Science, 7,479.
oRobinson, S. J., Deroo, C. S., & Yocum, C.F. (1982). Photosynthetic electron transfer in preparations of thecyanobacterium Spirulina platensis. PlantPhysiology, 70(1), 154-161.
oRozp?dek, P., Nosek, M., Domka, A., Wa?ny, R.,J?drzejczyk, R., Tokarz, K., ... & Turnau, K. (2019). Acclimation of thephotosynthetic apparatus and alterations in sugar metabolism in response toinoculation with endophytic fungi. Plant,cell & environment, 42(4),1408-1423.
oSinetova, M. A., Mironov, K. S., Mustardy, L.,Shapiguzov, A., Bachin, D., Allakhverdiev, S. I., & Los, D. A. (2015).Aquaporin-deficient mutant of Synechocystis is sensitive to salt and high-lightstress. Journal of Photochemistry andPhotobiology B: Biology, 152,377-382.
oThomas, T. D., Dinakar, C., & Puthur, J. T.(2019). Effect of UV-B priming on the abiotic stress tolerance ofstress-sensitive rice seedlings: Priming imprints and cross-tolerance. Plant Physiology and Biochemistry.
oTibiletti, T., Rehman, A. U., Vass, I., &Funk, C. (2018). The stress-induced SCP/HLIP family of smalllight-harvesting-like proteins (ScpABCDE) protects Photosystem II fromphotoinhibitory damages in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis research, 135(1-3), 103-114.
oTjus, S. E., M?ller, B. L., & Scheller, H.V. (1998). Photosystem I is an early target of photoinhibition in barleyilluminated at chilling temperatures. Plant Physiology, 116(2), 755-764.
oTrebst, A. (1972). [14] Measurement of hillreactions and photoreduction. In Methodsin enzymology (Vol. 24, pp. 146-165). Academic Press.
oTrotta, A., Barera, S., Marsano, F., Osella,D., Musso, D., Pagliano, C., ... & Barbato, R. (2018). Isolation andcharacterization of a photosystem II preparation from thylakoid membranes ofthe extreme halophyte Salicornia veneta Pignatti et Lausi. Plant physiology and biochemistry, 132, 356-362.
oUngerer, J., Lin, P. C., Chen, H. Y., &Pakrasi, H. B. (2018). Adjustments to photosystem stoichiometry and electrontransfer proteins are key to the remarkably fast growth of the cyanobacteriumSynechococcus elongatus UTEX 2973. MBio,9(1), e02327-17.
oVajravel, S., Kovács, L., Kis, M., Rehman, A.U., Vass, I., Gombos, Z., & Toth, T. N. (2016). β-Carotene influences thephycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803. Photosynthesis research, 130(1-3), 403-415.
oWu, W., Ping, W., Wu, H., Li, M., Gu, D., &Xu, Y. (2013). Monogalactosyldiacylglycerol deficiency in tobacco inhibits thecytochrome b6f-mediated intersystem electron transport process and affects thephotostability of the photosystem II apparatus. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(6), 709-722.
oZhang, H., Lv, J., Peng, Y., Zhang, S., An, X.,Xu, H., ... & Zheng, T. (2014). Cell death in a harmful algal bloom causingspecies Alexandrium tamarense upon an algicidal bacterium induction. Applied microbiology and biotechnology, 98(18), 7949-7958.
oZhang, Y., Ding, S., Lu, Q., Yang, Z., Wen, X.,Zhang, L., & Lu, C. (2011). Characterization of photosystem II intransgenic tobacco plants with decreased iron superoxide dismutase. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 1807(4),391-403.
oZhong, X., Li, Y., Che, X., Zhang, Z., Li, Y.,Liu, B., ... & Gao, H. (2019). Significant inhibition of photosynthesis andrespiration in leaves of Cucumis sativus L. by oxybenzone, an active ingredientin sunscreen. Chemosphere, 219, 456-462.
oZienkiewicz, M., Dro?ak, A., Wasilewska, W.,Bac?awska, I., Przedpe?ska-W?sowicz, E., & Romanowska, E. (2015). Theshort-term response of Arabidopsis thaliana (C3) and Zea mays (C4) chloroplaststo red and far red light. Planta, 242(6), 1479-1493.
oZienkiewicz, M., Krupnik, T., Dro?ak, A.,Wasilewska, W., Golke, A., & Romanowska, E. (2018). Deletion of psbQ’genein Cyanidioschyzon merolae reveals the function of extrinsic PsbQ’in PSII. Plant molecular biology, 96(1-2), 135-149.