<acronym id="pokdi"><strong id="pokdi"></strong></acronym>
      <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

      <td id="pokdi"><ruby id="pokdi"></ruby></td>
      <td id="pokdi"><option id="pokdi"></option></td>
      <td id="pokdi"></td>

        1. 教育裝備采購網
          第八屆圖書館論壇 校體購2

          FL3500雙調制葉綠素熒光儀部分參考文獻 (新升級型號為FL6000)

          教育裝備采購網 2019-03-04 13:17 圍觀1016次

          FL3500雙調制葉綠素熒光儀部分參考文獻

          (新升級型號為FL6000

            1.Manaa A.,et al. (2019)Salinity tolerance of quinoa (Chenopodium quinoaWilld) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany, Volume 162, Pages 103-114

            2.Sicora C. I., et al. (2019)Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynthesis Research, Volume 139, Issue 1–3, pp 461–473

            3.Smythers A. L.,et al. (2019)Characterizing the effect of Poast on Chlorella vulgaris, a non-target organism. Chemosphere, Volume 219, Pages 704-712

            4.Albanese P.,et al. (2018) Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integration. The Plant Journal, Volume96, Issue4, Pages 786-800

            5.Antal T., KonyukhovI., Volgusheva A., et al. (2018) Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. PhysiolPlantarum. DOI: 10.1111/ppl.12693

            6.Antal T. K., Maslakov A., Yakovleva O. V., et al. (2018). Simulation of chlorophyll fluorescence rise and decay kinetics, and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method. Photosynthesis Research. DOI:10.1007/s11120-018-0564-2

            7.Biswas S., Eaton-Rye J. J. (2018). PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica, 56(1), 200–209.

            8.Bonisteel E. M.,et al. (2018).Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS ONE 13(12): e0209115.

            9.Fang X., et al. (2018).Transcriptomic responses of the marine cyanobacteriumProchlorococcus to viral lysis products. Environmental Microbiology, doi: 10.1101/394122.

            10.Hanelt D. (2018). Photosynthesis assessed by chlorophyll fluorescence. Bioassays, Elsevier, Pages 169-198.

            11.KuthanováTrsková E., Belgio E., Yeates A. M.,et al. (2018) Antenna proton sensitivity determines photosynthetic light harvesting strategy, Journal of Experimental Botany, Volume 69, Issue 18, 14 August 2018, Pages 4483–4493

            12.Liefer J. D.,Garg A. Campbell D. A., et al. (2018) Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLoS ONE. DOI: 10.1371/journal.pone.0195705

            13.Malerba M. E., Palacios M. M., Palacios Delgado Y. M.,et al. (2018) Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytologist. DOI: 10.1111/nph.15163

            14.Patel V. K.,et al. (2018)Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. Arabian Journal for Science and Engineering, Volume 43, Issue 1, pp 109–121

            15.Pavlou A., Jacques J., Ahmadova N., Mamedov F., &Styring S.(2018). The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Scientific Reports, 8(1). DOI:10.1038/s41598-018-21101-w

            16.Perkins R., Williamson C., Lavaud J.,et al. (2018) Time-dependent upregulation of electron transport with concomitant induction of regulated excitation dissipation in Hasleadiatoms. Photosynth Res. DOI: 10.1007/s11120-018-0508-x

            17.Poulin C., D. Antoine, and Y. Huot. (2018). Diurnal variations of the optical properties of phytoplankton in a laboratory experiment and their implication for using inherent optical properties to measure biomass," Opt. Express 26, 711-729.

            18.Semin B. K., Davletshina L. N., &Mamedov M. D. (2017). Effect of different methods of Ca2 extraction from PSII oxygen-evolving complex on the QA? oxidation kinetics. Photosynthesis Research, 136(1), 83–91.

            19.Spijkerman E., Behrend H., Fach B., &Gaedke U. (2018). Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonasacidophila. Science of The Total Environment, 626, 1342–1349.

            20.Solhaug K. A., Chowdhury D. P., &Gauslaa Y. (2018). Short- and long-term freezing effects in a coastal (Lobariavirens) versus a widespread lichen (L. pulmonaria). Cryobiology, 82, 124–129.

            21.Takagi D., Ifuku K., Nishimura T. and Miyake C. (2018) Antimycin A inhibits cytohrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res. DOI: 10.1007/s11120-018-0519-7

            22.Ungerer J., Lin P-C., Chen H-Y., Pakrasi H. B. (2018) Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacteriumSynechococcuselongatusUTEX 2973. mBio 9:e02327-17.

            23.Xu K., Lavaud J., Perkins R., Austen E., Bonnanfant M., & Campbell D. A. (2018). Phytoplankton σPSII and Excitation Dissipation; Implications for Estimates of Primary Productivity. Frontiers in Marine Science, 5. DOI:10.3389/fmars.2018.00281

            24.Yu Z., et al. (2018)Physiological changes in Chlamydomonasreinhardtii after 1000 generations of selection of cadmium exposure at environmentally relevant concentrations. Environmental Science: Processes & Impacts, DOI:10.1039/C8EM00106E

            25.Yu Z., et al. (2018)Effects of TiO2, SiO2, Ag and CdTe/CdS quantum dots nanoparticles on toxicity of cadmium towards Chlamydomonasreinhardtii. Ecotoxicology and Environmental Safety, Volume 156, Pages 75-86

            26.Yussi M. Palacios, AvigadVonshak, and John Beardall (2018) Photosynthetic and growth responses of Nannochloropsisoculata(Eustigmatophyceae) during batch cultures in relation to light intensity. Phycologia: 2018, Vol. 57, No. 5, pp. 492-502.

            27.Ahmadova N., Ho F., Styring S. and Mamedov F. (2017) Tyrozine D oxidation and redox equilibrium in Photosystem II. BBA – Bioenergetics. DOI:10.1016/j.bbabio.2017.02.011

            28.Albanese P.,et al. (2017)Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap. Scientific Reports, 7: 10067, DOI:10.1038/s41598-017-10700-8

            29.Belgio E., Trsková E., Kotabová E., et al. (2017) High light acclimation of Chromeraveliapoints to photoprotective NPQ. Photosynth Res. DOI: 10.1007/s11120-017-0385-8

            30.Bernát G., Steinbach G., Kaňa R. et al. (2017). On the origin of the slow M–T chlorophyll A fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res. DOI: 10.1007/s11120-017-0458-8

            31.Chi? C., Carmel D., Chi? I.et al. (2017) Expression of psbA1 gene in Synechocystis sp. PCC 6803 is influenced by CO2. Open Life Sci. DOI: 10.1515/biol-2017-0018

            32.Felcmanová K., Luke? M., Kotabová E., et al. (2017) Carbon use efficiencies and allocation strategies in Prochlorococcusmarinus strain PCC 9511 during nitrogenlimited growth. Photosynth Res. Volume 134. DOI: 10.1007/s11120-017-0418-3

            33.Huokko T., et al. (2017)Role of type 2 NAD (P) H dehydrogenase NdbC in redox regulation of carbon allocation in Synechocystis. Plant Physiology, Vol. 174, pp. 1863–1880

            34.Kamalanathan M, Thi Dao L. H., Chaisutyakorna P., et al. (2017) Photosynthetic physiology of Scenedesmus sp. (Chlorophyceae) under photoautotrophic and molasses-based heterotrophic and mixotrophic conditions. Phycologia. 56. No. 6. DOI: 10.2216/17-45.1

            35.Li G. and Campbell D. A.(2017) Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Photosynth Res. Volume 131, DOI:10.1007/s11120-016-0301-7

            36.Li G., Talmy D. and Campbell D. A. (2017) Diatom growth responses to photoperiod and light are predictable from dielreductant generation. J. Phycol. Volume 53. DOI: 10.1111/jpy.12483

            37.Markou G., Dao L. H. T., Muylaert K. and Beardall J.(2017) Influence of different degrees of N limitation on photosystem II performance and heterogeneity of Chlorella vulgaris.Algal Research. Pages 84 – 92. DOI: 10.1016/j.algal.2017.07.005

            38.Miyachi M., Ikehira S., Nishior D.,et al. (2017) Photocurrent generation of reconstituted photosystem II on self-assembled gold film. Langmuir.,Volume 33 (6). DOI: 10.1021/acs.langmuir.6b03499

            39.Murphy C. D.,et al. (2017)Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS ONE, 12(1): e0168991

            40.Nath A., et al. (2017)Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiology and Molecular Biology of Plants, Volume 23, Issue 2, pp 269–280

            41.Ni G., et al. (2017)Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. Photosynthesis Research, Volume 131, Issue 2, pp 203–220

            42.Piwosz K., Kaftan D., Dean J., et al. (2017) Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobactershibae. Environmental microbiology. DOI: 10.1111/1462-2920.14003

            43.Xu K., Grant-Burt J. L., Donaher N. and Campbell D. A. (2017) Connectivity among Photosystem II centers in Phytoplankters: Patterns and Responses. BBA – Bioenergetics. DOI:10.1016/j.bbabio.2017.03.003

            44.Zhang X., Ma F., Zhu X.,et al. (2017) The acceptor side of photosystem II is the initial target of nitrite stress in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol

            45.Dao L. H. T. and Beardall J. (2016) Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogenity. Algal Research. Volume 16. DOI: 10.1016/j.algal.2016.03.006.

            46.Ferroni L., Suorsa M., Aro, E. M., et al. (2016) Light acclimation in the lycophyteSelaginellamartensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. New Phytol. Volume 211. DOI: 10.1111/nph.13939

            47.Garcia-Chaves M. C., Cottrell M. T., Kirchman D. L. et al. (2016) Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. The ISME Journal. Volume 10. DOI:10.1038/ismej.2015.242

            48.Grama B. S., Agathos S. N. and Jeffryes C. S. (2016) Balancing Photosynthesis and Respiration Increases Microalgal Biomass Productivity during Photoheterotrophy on Glycerol. ACSSustainable Chem. Eng. Volume 4. Pages 1611–1618.

            49.Kobayashi K., Endo K. and Wada H. (2016) Multiple Impacts of Loss of PlastidicPhosphatidylglycerol Biosynthesis on Photosynthesisduring Seedling Growth of Arabidopsis. Frontiers of Plant Sciences. Volume 7. DOI: 10.3389/fpls.2016.00336

            50.Li G., Woroch A. D., Donaher N. A., Cockshutt A. M.,et al. (2016) A Hard Day's Night: Diatoms Continue Recycling Photosystem II in the Dark . Frontiers in Marine Science. Volume 3. DOI: 10.3389/fmars.2016.00218

            51.Murphy C. D., Ni G., Li G., et al. (2016) Quantitating active photosystem II reaction center content from fluorescence induction transients. Limnol. Oceanogr. Methods. DOI:10.1002/lom3.10142

            52.Patel V. K., Mají D., Pandey S. S., et al. 2016) Rapid budding EMS mutants of Synechocystis PCC 6803 producing carbohydrate or lipid enriched biomass, Algal Research. Volume 16. DOI: 10.1016/j.algal.2016.02.029.

            53.Rehman A. U., Szabó M., Deák Z., et al. (2016) Symbiodinium sp. cells produce light-induced intra- and extracellular singlet oxygen, which mediates photodamage of the photosynthetic apparatus and has the potential to interact with the animal host in coral symbiosis. New Phytol. Volume 212. DOI:10.1111/nph.14056

            54.Treves H., Raanan H., Kedem I., et al. (2016) The mechanisms whereby the green alga Chlorella ohadii isolated from desert soil crust, exhibits unparalleled photodamageresistence. New Phytologist. 210.DOI : 10.1111/nph.13870

            55.Volgusheva A., Kruse O., Styring S., et al. (2016) Changes in the Photosystem II complex associated with hydrogen formation in sulfur deprived Chlamydomonasreinhardtii. Algal Research. Volume 18. DOI: 10.1016/j.algal.2016.06.025.

            56.Wang J., Liu Q., Feng J., et al.(2016) Photosynthesis Inhibition of Pyrogallol Against the Bloom-Forming CyanobacteriumMicrocystisaeruginosa TY001. Pol. J. Environ. Stud. Volume 25. DOI: 10.15244/pjoes/63412

            57.Cheregi O., Kotabová E., Prá?il O., et al.(2015) Presence of state transitions in the cryptophyte alga Guillardia theta. Journal of Experimental Botany. Volume%

          點擊進入北京易科泰生態技術有限公司展臺查看更多 來源:教育裝備采購網 作者:北京易科泰生態技術有限公司 責任編輯:方劍波 我要投稿
          校體購終極頁

          相關閱讀

          版權與免責聲明:

          ① 凡本網注明"來源:教育裝備采購網"的所有作品,版權均屬于教育裝備采購網,未經本網授權不得轉載、摘編或利用其它方式使用。已獲本網授權的作品,應在授權范圍內使用,并注明"來源:教育裝備采購網"。違者本網將追究相關法律責任。

          ② 本網凡注明"來源:XXX(非本網)"的作品,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本網贊同其觀點和對其真實性負責,且不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、網站或個人從本網下載使用,必須保留本網注明的"稿件來源",并自負版權等法律責任。

          ③ 如涉及作品內容、版權等問題,請在作品發表之日起兩周內與本網聯系,否則視為放棄相關權利。

          校體購產品
          99久久国产自偷自偷免费一区|91久久精品无码一区|国语自产精品视频在线区|伊人久久大香线蕉av综合

            <acronym id="pokdi"><strong id="pokdi"></strong></acronym>
              <acronym id="pokdi"><label id="pokdi"><xmp id="pokdi"></xmp></label></acronym>

              <td id="pokdi"><ruby id="pokdi"></ruby></td>
              <td id="pokdi"><option id="pokdi"></option></td>
              <td id="pokdi"></td>